On Positivity of the Kadison Constant and Noncommutative Bloch Theory

نویسنده

  • VARGHESE MATHAI
چکیده

In [V. Mathai, K-theory of twisted group C∗-algebras and positive scalar curvature, Contemp. Math. 231 (1999) 203–225], we established a natural connection between the Baum-Connes conjecture and noncommutative Bloch theory, viz., the spectral theory of projectively periodic elliptic operators on covering spaces. We elaborate on this connection here and provide significant evidence for a fundamental conjecture in noncommutative Bloch theory on the non-existence of Cantor set type spectrum. This is accomplished by establishing an explicit lower bound for the Kadison constant of twisted group C∗-algebras in a large number of cases, whenever the multiplier is rational.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATIONS OF THE FUGLEDE-KADISON DETERMINANT: SZEGÖ’S THEOREM AND OUTERS FOR NONCOMMUTATIVE H p

We first extend properties of the Fuglede-Kadison determinant on a finite von Neumann algebra M to L p (M), any p > 0. Using this we give several useful variants of the noncommutative Szegö theorem for L p (M), including the one usually attributed to Kolmogorov and Krein. As applications, we generalize the noncommutative Jensen inequality, and generalize many of the classical results concerning...

متن کامل

The Random Paving Property for Uniformly Bounded Matrices

This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison–Singer problem. The result shows that every unitnorm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so that the res...

متن کامل

A Kadison–Dubois representation for associative rings

In this paper we give a general theorem that describes necessary and sufficient conditions for a module to satisfy the so–called Kadison–Dubois property. This is used to generalize Jacobi’s version of the Kadison–Dubois representation to associative rings. We apply this representation to obtain a noncommutative algebraic and geometric version of Putinar’s Positivstellensatz. We finish the paper...

متن کامل

A New Proof of the Noncommutative Banach-stone Theorem

Surjective isometries between unital C*-algebras were classified in 1951 by Kadison [K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s theorem and supplying some supplementary lemmas. Here we combine an observation of Paterson and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fundamentally new proof of the structure ...

متن کامل

Twisted Index Theory on Good Orbifolds, I: Noncommutative Bloch Theory

We study the twisted index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group. We apply these results to obtain qualitative results on real and complex hyperbolic spaces in 2 and 4 dimensions, related to generalizations of the Bethe-Sommerfeld conjecture and the Ten Martini Problem, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000